Number of spanning trees on a lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1977 J. Phys. A: Math. Gen. 10 L113
(http://iopscience.iop.org/0305-4470/10/6/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 13:59

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Number of spanning trees on a lattice \dagger

F Y Wu
Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA

Received 28 March 1977

Abstract

The number of spanning trees on a large lattice is evaluated exactly for the square, triangular and honeycomb lattices.

A spanning tree of a lattice \mathscr{L} is a graph drawn on \mathscr{L} which connects all lattice sites and contains no polygons. For a regular lattice of N sites, the number of spanning trees on \mathscr{L}, T_{N}, behaves as $\mathrm{e}^{2 N}$ for large N. We report here the exact values of z for the square (SQ), triangular (TR) and honeycomb (HC) lattices.

More specifically let

$$
\begin{equation*}
z=\lim _{N \rightarrow \infty} N^{-1} \ln T_{N} \tag{1}
\end{equation*}
$$

We find

$$
\begin{align*}
& z_{\mathrm{SO}}=\frac{4}{\pi}\left(1-3^{-2}+5^{-2}-7^{-2}+\ldots\right)=1 \cdot 1662436 \ldots \\
& z_{\mathrm{TR}}=\frac{3 \sqrt{3}}{\pi}\left(1-5^{-2}+7^{-2}-11^{-2}+13^{-2}-\ldots\right)=1.61532968 \ldots \tag{2}\\
& z_{\mathrm{HC}}=\frac{1}{2} z_{\mathrm{TR}}=0.8076648 \ldots
\end{align*}
$$

It was first pointed out by Fortuin and Kasteleyn (1972) that T_{N} is expressible in terms of the partition function of a lattice statistical model. For our purpose, it suffices to consider the following graph generating function on \mathscr{L} :

$$
\begin{equation*}
Z_{N}(q, v)=\sum_{G} q^{n} v^{e} \tag{3}
\end{equation*}
$$

Here the summation extends over all graphs G on $\mathscr{L} ; n$ and e are, respectively, the numbers of clusters and edges in $G . Z_{N}$ is proportional to the cluster generating function of Fortuin and Kasteleyn (1972), and coincides with the partition function of a q-component Potts model for integral q (Baxter 1973). Now let $v=q^{\alpha}$ and consider the $q \rightarrow 0$ limit of the function

$$
\begin{equation*}
Z_{N}\left(q, q^{\alpha}\right)=q^{\alpha N} \sum_{G} q^{\alpha c+(1-\alpha) n} \tag{4}
\end{equation*}
$$

[^0]where we have used the Euler relation $N+c=n+e$ to eliminate the parameter e in favour of c, the number of independent crrcuits in G. For $a=1$ the leading terms in (4) in the $q \rightarrow 0$ limit are the tree graphs $(c=0)$. Consequently, $Z_{N}(q, q)$ generates forests of trees on \mathscr{L} (Stephen 1976). For $0<\alpha<1$ the leading terms are the spanning trees ($c=0, n=1$). Thus we have the exact relation valid for any finite lattice
\[

$$
\begin{equation*}
T_{N}=\lim _{q \rightarrow 0} q^{\alpha(1-N)-1} Z_{N}\left(q, q^{\alpha}\right), \quad 0<\alpha<1 \tag{5}
\end{equation*}
$$

\]

Equation (5) reduces to (7.13) of Fortuin and Kasteleyn (1972) upon taking $\alpha=\frac{1}{2}$.
For planar \mathscr{L} the generating function (3) is related to the partition function of an ice-type problem on a related medial lattice $\mathscr{L}^{\prime \prime}$ (Baxter et al 1976). The choice of $\alpha=\frac{1}{2}$ in (5) is especially convenient, for the resulting ice-type model is well defined and soluble in the $q \rightarrow 0$ limit. Combining (5) with (14) of Baxter et al (1976), we obtain (with $\alpha=\frac{1}{2}$) from (1)

$$
\begin{equation*}
z=\lim _{N \rightarrow \infty} N^{-1} \ln Z^{\prime} \tag{6}
\end{equation*}
$$

where Z^{\prime} is the partition function of an ice-type model defined on the medial lattice \mathscr{L}^{\prime}. If \mathscr{L} is a square lattice, then \mathscr{L}^{\prime} is also a square lattice but having $2 N$ sites. The vertex weights of the ice-type model on $\mathscr{L}^{\prime \prime}$ are (cf figure 5 of Baxter et al 1976)

$$
\begin{equation*}
\omega_{1}, \ldots, \omega_{6}=1,1,1,1, \sqrt{ } 2, \sqrt{ } 2 \tag{7}
\end{equation*}
$$

If \mathscr{L} is a triangular (honeycomb) lattice, then \mathscr{L}^{\prime} is a Kagomé lattice of $3 N(3 N / 2)$ sites with the following vertex weights:

$$
\begin{equation*}
\omega_{1}, \ldots, \omega_{6}=1,1,1,1, \mathrm{e}^{-\mathrm{i} \pi / 6}+\mathrm{e}^{\mathrm{i} \pi / 3}, \mathrm{e}^{\mathrm{i} \pi / 6}+\mathrm{e}^{-\mathrm{i} \pi / 3} \tag{8}
\end{equation*}
$$

In either case, it is readily verified that the weights satisfy the free-fermion conditions (Fan and Wa 1970)

$$
\begin{equation*}
\omega_{2} \omega_{2}+\omega_{3} \omega_{4}=\omega_{5} \omega_{6} \tag{9}
\end{equation*}
$$

so that the right-hand side of (6) can be evaluated by computing a Pfafian. In the case of square lattice, the free-fermons solution of Z^{\prime} was first evaluated by Wu and reported in Lieb (1967). The numericil value (2) for $z_{\text {so }}$ now follows from (20) of Lieb (1967) and the fact that \mathscr{L}^{\prime} contains 2 N sites. In the case of Kagomé lattice, the free-fermion solution of Z^{\prime} has been obtained by $\operatorname{Ln}(1975) \dagger$. In the notation shown in figure 2 of Lin (1975), we may rewrite (8) as

$$
\begin{align*}
& \omega_{i}=\omega_{i}^{\prime}=\omega_{i}^{\prime \prime}, \quad i=1,2,3,4 \\
& \omega_{5}=\omega_{5}^{\prime}=\omega_{6}^{\prime \prime}=\mathrm{e}^{-\mathrm{im} / 6}+\mathrm{e}^{\mathrm{iz/3}} \tag{10}\\
& \omega_{6}=\omega_{6}^{\prime}=\omega_{5}^{\prime \prime}=\mathrm{e}^{\mathrm{i} \pi / 6}+\mathrm{e}^{-\mathrm{i} \pi / 3}
\end{align*}
$$

Equation (11) of Lin (1975) \dagger now leads to
$z_{\mathrm{TR}}=2 z_{\mathrm{HC}}=\frac{1}{4 \pi^{2}} \int_{0}^{2 \pi} \mathrm{~d} \theta \int_{0}^{2 \pi} \mathrm{~d} \phi \ln [6-2 \cos \theta-2 \cos \phi-2 \cos (\theta+\phi)]$.
This reduces to (2) upon carrying out the integrations.

[^1]
References

Baxter R J 1973 J. Phys. C: Solid St. Phys. 6 L445-8
Baxter R J, Kelland S B and Wu F Y 1976 J. Phys. A: Math. Gen. 9 397-406
Fan C and Wu F Y 1970 Phys. Rev. B 2 723-33
Fortuin C M and Kasteleyn P W 1972 Physica 57 536-64
Lieb E H 1967 Phys. Rev. Lett. 18 1046-8
Lin K Y 1975 J. Phys. A: Math Gen. 8 1899-919
Stephen M 1976 Phys. Letr. 56A 149-50

[^0]: \dagger Work supported in part by NSF Grant No. DMR 76-20643.

[^1]: \dagger The free energy given by Lin (1975) contains an error. The right-hand side of his equetion (11) (emed on other expressions for ϕ) should be multiplied by a factor $\frac{3}{3}$.

