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L E m R  TO THE EDITOR 

Number of spanning trees on a lattice? 

F Y W u  
Department of Physics, Northeastern University, Boston, Massachusetts 021 15, USA 

Received 28 March 1977 

Abstract. The number of spanning trees on a large lattice is evaluated exactly for the square, 
triangular and honeycomb lattices. 

A spanning tree of a lattice 2 is a graph drawn on 2 which connects all lattice sites and 
contains no polygons. For a regular lattice of N sites, the number of spanning trees on 
2, TN, behaves as eZN for large N. We report here the exact values of z for the square 
(sQ), triangular (TR) and honeycomb (HC) lattices. 

More specifically let 

z = lim N-' In TN. 
N-m 

We find 

4 
z S Q - T  --(1-3-2+5-2-7-2+. . . )=  1.166 243 6 . .  

3J3 
~ ~ R = - ( l - 5 - ~ + 7 - ~ - 1 1 - ~ + 1 3 - ~ - -  . . . )=  1.61532968. .  . 

T 

ZHC =$ZTR = 0.807 664 8 . . , . 

It was first pointed out by Fortuin and Kasteleyn (1972) that T N  is expressible in 
terms of the partition function of a lattice statistical model. For our purpose, it suffices 
to consider the following graph generating function on 2: 

Here the summation extends over all graphs G on 2; p and e are, respectively, the 
numbers of clusters and edges in G. 2, is proportional to the cluster generating 
function of Fortuin and Kasteleyn (1972), and coincides with the partition function of a 
q-component Potts model for integral 4 (Baxter 1973). Now let U = 4O and consider 
the q + 0 limit of the function 

t Work supported in part by NSF Grant No. DMR 76-20643. 
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where we have used the Euler retatfoa N + c  = n +e to eliminate the parameter e in 
favour of c, the number of independeht ch.caits in G. FWQ = 1 the leading termsin (4) 
in the q + 0 limit are the tree graphs (c = 0). consequently, z N ( q ,  4) generates forests 
of trees on Y? (Stephen 1976). For 0 <a < 1 the leading term are the spanning trees 
(c = 0, n = 1). Thus we bave ttse cuicc relation valid for any finite lattice 

Z N  (q, q-1, O < a  < 1. (5) TN = lim q a ( l - N F I  

4 4  

Equation (5 )  reduoes to (7.13) d Fortub and Kastekyn (1972) upon taking a = i. 
For planar Y? the generating function (3) is related to the partition function of an 

ice-type problem on a related medial lattice Z (Baxter et d 1976). The choice of CY = f 
in (5 )  is especially convenient, for the resulting ice-type model is well defined and 
soluble in the q -* 0 limit. Combining (5) with (14) of Bvrter et d (t976), we obtain 
(with a = 1) from (1) 

where 2 is the partition fundionof an ice-type model defined on the medial lattice 9'. 
If Y? is a square lattice, rben 2'' is also a square lattice but having 2N sites. The vertex 
weights of the ice-type model on  2" are (cf figure 5 of Baxter et al 1976) 

Wl,...,o6=1,1, 1,1,&&- (7) 

If 9 is a triangular (honeycomb) httice, then 9' is a KagomC lattice of 3N (3N/2 )  sites 
with the fdiowing vertex weights: 

o . . . ,U6 = I, I,  I, 1, +eiw", eiUi6 (8) 

In either case, it is readily verified that the weights satisfy the free-fermion conditions 
(Fan and Wu 1970) 

@@2+a3@4= 0506 (9) 
so that the right-hand side of (4) caa be evaluated by computinga ff9ffian. In the case 
ofsquare lattice, the frac-derogbs~tioeoBZvas1GwreprluatcdbyWudrepated 
in Lieb (1967). The n u m r i a l  radue (2) €m zsQ now follows from (zo) of Lieb (1967) 
and the fact that 9' contains 2.M Sacs. Ie &case of KagomC lattice, the free-fermion 
solutionof Z'has been obtained by tin(1975)t. In the notation shown in figure 2 of Lin 
(19751, we may rewrite (8) as 

o6 = = = eW6 + e-W3 

Equation (I 1 )  of Lin (19797 1l0w leads to 

z T R = 2 z H c = 7  41r lo2w de re 146 -2 cos 8 - 2 cos 4 -2 M e  +.+)). (1 U 

This reduces to (2) upon carrying out the integratians. 

t The free energy &ea by Lin (1975) contains an error. Tbc right-hand side of &is qmtiuo (SI) (a69 
otha expressions for 9) -be multiplied by a factar 3. 
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